34 research outputs found

    Noise Reduction by Diffusional Dissipation in a Minimal Quorum Sensing Motif

    Get PDF
    Cellular interactions are subject to random fluctuations (noise) in quantities of interacting molecules. Noise presents a major challenge for the robust function of natural and engineered cellular networks. Past studies have analyzed how noise is regulated at the intracellular level. Cell–cell communication, however, may provide a complementary strategy to achieve robust gene expression by enabling the coupling of a cell with its environment and other cells. To gain insight into this issue, we have examined noise regulation by quorum sensing (QS), a mechanism by which many bacteria communicate through production and sensing of small diffusible signals. Using a stochastic model, we analyze a minimal QS motif in Gram-negative bacteria. Our analysis shows that diffusion of the QS signal, together with fast turnover of its transcriptional regulator, attenuates low-frequency components of extrinsic noise. We term this unique mechanism “diffusional dissipation” to emphasize the importance of fast signal turnover (or dissipation) by diffusion. We further show that this noise attenuation is a property of a more generic regulatory motif, of which QS is an implementation. Our results suggest that, in a QS system, an unstable transcriptional regulator may be favored for regulating expression of costly proteins that generate public goods

    Turing patterns on networks

    Full text link
    Turing patterns formed by activator-inhibitor systems on networks are considered. The linear stability analysis shows that the Turing instability generally occurs when the inhibitor diffuses sufficiently faster than the activator. Numerical simulations, using a prey-predator model on a scale-free random network, demonstrate that the final, asymptotically reached Turing patterns can be largely different from the critical modes at the onset of instability, and multistability and hysteresis are typically observed. An approximate mean-field theory of nonlinear Turing patterns on the networks is constructed.Comment: 4 pages, 4 figure

    Noise regulation by quorum sensing in low mRNA copy number systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cells must face the ubiquitous presence of noise at the level of signaling molecules. The latter constitutes a major challenge for the regulation of cellular functions including communication processes. In the context of prokaryotic communication, the so-called quorum sensing (QS) mechanism relies on small diffusive molecules that are produced and detected by cells. This poses the intriguing question of how bacteria cope with the fluctuations for setting up a reliable information exchange.</p> <p>Results</p> <p>We present a stochastic model of gene expression that accounts for the main biochemical processes that describe the QS mechanism close to its activation threshold. Within that framework we study, both numerically and analytically, the role that diffusion plays in the regulation of the dynamics and the fluctuations of signaling molecules. In addition, we unveil the contribution of different sources of noise, intrinsic and transcriptional, in the QS mechanism.</p> <p>Conclusions</p> <p>The interplay between noisy sources and the communication process produces a repertoire of dynamics that depends on the diffusion rate. Importantly, the total noise shows a non-monotonic behavior as a function of the diffusion rate. QS systems seems to avoid values of the diffusion that maximize the total noise. These results point towards the direction that bacteria have adapted their communication mechanisms in order to improve the signal-to-noise ratio.</p

    Multicellular Computing Using Conjugation for Wiring

    Get PDF
    Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal ‘‘re-programming’’ and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a ‘‘computation’’ is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the ‘‘wiring’’ between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multicellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular computing system under different conditions, and provide baseline information for future laboratory implementations

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552

    Advancing microbial sciences by individual-based modelling

    Get PDF
    Remarkable technological advances have revealed ever more properties and behaviours of individual microorganisms, but the novel data generated by these techniques have not yet been fully exploited. In this Opinion article, we explain how individual-based models (IBMs) can be constructed based on the findings of such techniques and how they help to explore competitive and cooperative microbial interactions. Furthermore, we describe how IBMs have provided insights into self-organized spatial patterns from biofilms to the oceans of the world, phage-CRISPR dynamics and other emergent phenomena. Finally, we discuss how combining individual-based observations with IBMs can advance our understanding at both the individual and population levels, leading to the new approach of microbial individual-based ecology (μIBE)
    corecore